

Spacecraft Navigation Using X-ray Pulsars

Suneel I. Sheikh

(ASTER Labs, Inc.)

Demetrios Matsakis

(U.S. Naval Observatory)

Presentation to
International Astronomical Union
XXVIth General Assembly
(Prague, Czech Republic)

August 21, 2006

XNAV Program Description

- Provide a GPS-free, autonomous spacecraft navigation capability
- Develop navigation capability exploiting celestial X-ray sources for time, position, velocity, and attitude determination
 - Develop high fidelity catalog of candidate sources.
 - Develop new X-ray sensors to meet stringent imaging and timing requirements.

Develop advanced navigation algorithms incorporating X-ray

photon time of arrival data.

- New system capable of operating in various orbits
 - LEO, HEO, GEO, Cis-lunar, Interplanetary

Notional XNAV Concept

XNAV Program Goals

- Autonomously determining spacecraft position and time requires high fidelity system
 - Photon time tagging resolution $< 1 \mu s$.
 - Large area, gimbaled detectors.
 - Accurate navigation algorithms, incorporating existing pulse timing models and relativistic time transfer

Allan, Ashby & Hodge, 1997

Allan, Ashby & Hodge, 1997

XNAV System Testing

- Plan is to use Space Shuttle to deploy test system to ISS (2009)
 - Provided adequate test environment without cost of supporting vehicle
 - Express Logistics Carrier (ELC)
 - Eventually test on free-flyer mission
- Test and verification system integrated into experiment design
- Science data from X-ray sources will be provided to community

DARPA

X-ray Sources

Benefits

- Many variable sources
- Unique signatures
- Wide coverage in sky
- Small detectors for spacecraft
 - 5000 cm² detector area

Observations of Crab Nebula and Pulsar at Various Wavelengths

(VLA/NRAO)

IPAC-Caltech/NASA/NSF)

(Palomar Obs.)

X-ray (NASA/CXC/SAO)

Issues for Navigation

- Few "bright" sources
 - Low energy flux
 - Requires long observation times
- Source characteristics
 - Transient (on/off for unknown duration)
 - Flares and Bursts (high intensity signal brief duration)
 - Glitches (star-quakes)
- X-ray experimentation requires on-orbit testing

Pulsar B1509-58 (Chandra X-ray Observatory NASA/MIT/B.Gaensler et al.)

X-ray Source Location Plots

Galactic Latitude and Longitude of Neutron Stars

Isolated neutron stars

Galactic Latitude and Longitude of Millisecond Sources

 Millisecond sources (period < 0.02 seconds)

Source Characteristics Analysis

Period Derivative versus Period

have higher X-ray flux

- Some short period objects

Conventional Position Methods

Methods similar to visible stars

- Occultation
 - Pass behind celestial body's limb
 - ex. Earth
 - X-rays absorbed by atmosphere

Pulsar Elevation

- Compare direction to pulsar to known direction and distance of celestial body (ex. Earth, Moon)
- Adjust distance to body via measured pulsar direction

Spacecraft Orbits

Time-Position Relationship

Time Transfer Equation:
$$t_{SSB} = t_{SC} + \frac{\hat{\mathbf{n}} \cdot \mathbf{r}_{SC}}{c} + O(\text{Relativistic Terms})$$

Pulsar Timing Model

$$\Phi(t) = \Phi(t_0) + f[t - t_0] + \frac{\dot{f}}{2}[t - t_0]^2 + \frac{\ddot{f}}{6}[t - t_0]^3$$

 Φ is phase of cycle, t_0 is reference epoch, f is pulse frequency

Barycenter Time Transfer

- Photon transmitted from source and arrives at spacecraft detector
 - Photons follow null geodesics (paths) of light rays entering solar system
- Analytical expression to transfer time from any position in solar system into inertial frame with origin of solar system barycenter (SSB)
 - Photons follow null geodesics (paths) of light rays entering solar system
 - Example implementations: TEMPO (2), AXBary, SAXDAS

Time Transfer Equation

$$(t_{SSB} - t_T) - (t_{SC} - t_T) = (t_{SSB} - t_{SC})$$

3-D Orbit Determination

Pester Delta-Position Correction Method

- Compare measured pulse TOA to predicted TOA
 - Use estimated position to compute measured TOA
 - Difference is delta position (position offset) along line of sight to pulsar
- Computes position relative to SSB
- Continually refine position estimate using multiple pulsar measurements

Delta-Correction Validation

- ARGOS Operations
 - 850 km orbit altitude, 98.7° inclination
- NRL USA Experiment Observations
 - Compute delta position estimates
 - Compare estimate to known position error
- USA observations in December 1999

POSITION OFFSETS FROM CRAB PULSAR OBSERVATIONS BY USA DETECTOR.

Observation Date (Dec. 1999)	Duration (<u>s)</u>	Observed <u>Pulse</u> <u>Cycles</u>	TOA Difference (Error) (10 ⁻⁶ s)	Position Offset (Accuracy) (km)
21 st	446.7	13332	53.75 (5.8)	16.1 (1.8)
24 th 26 th	695.9 421.7	20770 12586	-31.02 (5.2) -37.16 (6.3)	-9.30 (1.6) -11.1 (1.9)

Crab Nebula and Pulsar (NASA/CXC/ASU/J.Hester et al.)

Rockwel

• <u>Truth Comparison</u> - GPS receiver onboard *ARGOS* faulty and required correction every four hours. Actual position errors up to 15 km measured.

Position Update

- Accumulate photons to produce high SNR profile
- Compute TOA and position error
- Correct position estimate
- Correct only along line of sight to pulsar

Estimated Path

Blend dynamics and measurements in Kalman Filter

21 August 2006

RPSR Range Accuracy

Estimated Range Measurement Accuracy versus Observation Time (1-m² Detector Area)

Assumes constant X-ray background = $0.005 \text{ ph/cm}^2/\text{s} (2-10 \text{ keV})$

- Using SNR and pulse width, compute range accuracy
- Plot shows accuracy for top 10 pulsars
 - -SNR > 2
 - Assumes SNR is unlimited
- After 500 s observation:
 - B0531+21: 109 m
 - B1821-24: 325 m
 - B1937+21: 344 m

Crater On-Orbit Navigation Simulation

- Numerical Orbit Propagator
 - Earth-system orbit
 - Perturbation acceleration effects
 - Compare to *truth* orbit solution
- Kalman filter incorporates dynamics of spacecraft
- Set initial error with respect to truth
 - Initial errors on order of 100 m and 0.01 m/s each axis
- Simulation creates pulsar-based range measurements
 - Simulate relativistic time transfer
 - Simulate noise with magnitude based on SNR plots

GPS Orbit Example

After initial filter settling, filter solution errors with respect to truth are kept below 200 m for each axis

XNAV Foreseen Benefits

- New navigation system
- Could provide full navigation solution
 - Time
 - Attitude
 - Position: < 500 m (MSRE)
 - Velocity: 10 mm/s (RMS)
- Allows autonomous vehicle operation
 - High visibility
- Backup for existing systems
 - GPS and DSN complement
- Wide operating range
 - LEO and GEO
 - Highly elliptical orbits (ex. Earth–Moon)
 - Interplanetary orbits (ex. Earth–Mars)
 - Someday ... interstellar orbits

